8-bit Proprietary Microcontroller

CMOS

F²MC-8L MB89960 Series

MB89965/P965A/F969A/ MB89PV960

DESCRIPTION

The MB89960 series is a single-chip microcontroller that utilizes the F²MC-8L core for low voltage and high speed performance. The microcontroller contains a range of peripheral functions including timers, a serial interface, I²C interface, A/D converter, and external interrupts. The internal I²C interface complies with the SM bus standard and supports an SM bus battery controller.

FEATURES

- Range of package options
- QFP and MQFP packages (0.8 mm pitch)
- LQFP package (0.5 mm and 0.65 mm pitch)
- High speed operation at low voltage Minimum instruction execution time = $0.4 \ \mu s$ (for a 10 MHz oscillation)

• F²MC-8L CPU core

Instruction set optimized for controller applications

- Multiplication and division instructions
- 16-bit arithmetic operations
- · Bit test branch instructions
- Bit manipulation instructions, etc.

Dual-clock control system

- Main clock : 10 MHz max.
- (Four speed settings available, oscillation halts in sub-clock mode)
- Sub-clock : 32.768 kHz (Operation clock for sub-clock mode)

• Four channels

- 8/16-bit timer/counter (8-bit × 2 channels or 16-bit × 1 channel)
- 21-bit timebase timer
- Clock prescaler (15-bit)
- Serial I/O

Selectable transfer format (MSB-first or LSB-first) supports communications with a wide range of devices.

A/D converter

 $10\text{-bit} \times 4 \text{ channels}$

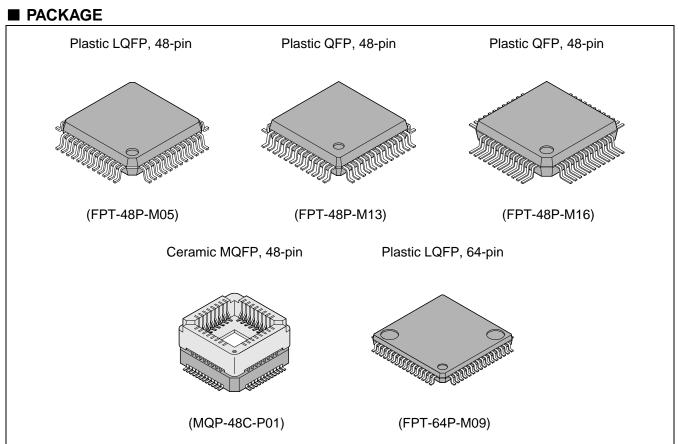
External interrupts

- External interrupt 1 (3 channels) Three independent interrupt inputs can be used to recover from low-power consumption modes (with edgedetection function)
- External interrupt 2 (1 channel with 8 inputs) Eight inputs can be used to recover from low-power consumption modes (with "L" level detection function)

Low-power consumption modes (standby modes)

- Stop mode (As all oscillations halt in sub-clock mode, current consumption falls to almost zero.)
- Sleep mode (The CPU stops to reduce the current consumption to approximately 1/3 of normal.)
- Clock mode (All operation halts other than the clock prescaler resulting in very low power consumption.)

I²C interface*


- Supports Intel SM bus and Philips I²C bus standards.
- Uses a two-wire data transfer protocol.

• Max. 35 I/O ports

- Output-only ports (N-ch open drain) :6
- General-purpose I/O ports (CMOS) : 21
- Output-only ports (CMOS) :8

*: I²C license

The customer is licensed to use the Philips I²C patent when using this product in an I²C system that complies with the Philips I²C standard specifications.

■ PRODUCT LINEUP

	Part No.	MB89965	MB89P965A	MB89F969A	MB89PV960
Pram	eter	INID09900	WD09F90JA	WID09F909A	WD09PV900
Class	ification	Mass-produced products (mask ROM products)	One-time product	Flash product	Piggyback/ evaluation product for testing and development
ROM	size	16 K × 8-bit (Interr	nal mask ROM)	60 K × 8-bit	32 K × 8-bit (External ROM) *
RAM	size	512 × 8	3-bit	1024	× 8-bit
CPU	functions	Number of instructions Instruction bit length Instruction length Data bit length Minimum execution time Interrupt processing tim		: 136 : 8-bit : 1 to 3 bytes : 1-, 8-, 16bits : 0.4 μs (at 10 MHz) : 3.6 μs (at 10 MHz)	
	Ports	Output-only ports (N-ch Output-only ports (CMC General-purpose I/O po Total	DS)		ed with analog inputs) ed with resource I/O) source I/O)
	Timebase timer	21-bit Four interrupt intervals s main clock)	selectable 0.82 ms, 3	8.3 ms, 26.2 ms, or 41	9.4 ms (approx.) (for
	Watchdog timer	Reset trigger period : 4 ⁻ 50	19.4 ms (10 MHz mai)0 ms (32.768 MHz si		
		One channel. Supports Uses a 2-wire protocol f			ous standards.
Pe- riph- eral	I ² C interface	Included/Not included (Specified when order- ing. See "Ordering In- formation" for details.)		Included	
func- tions	8/16-bit timer/ counter Timer	2 channel 8-bit timer/co timer 2) or 16-bit timer/c can execute an event co Clock. 1 or 16-bit timer/counte	counter operation (ope ounter operation and	eration clock period :	0.8 μs to 204.8 μs)
	Serial I/O	8 bits LSB-first or MSB-first se Transfer clocks : Extern		ocks (0.8 μs, 3.2 μs, 1	2.8 μs)
	External interrupt 1 (edge)	Selectable edge detecti 3 independent channels These can also be used in stop mode).	6	- /	ection is still available
	External interrupt 2 (level)	1 channel with 8 inputs This can also be used to stop mode) .			

(Continued)

(Continued)

	Part No.	MB89965	MB89P965A	MB89F969A	MB89PV960	
Pram	eter	MB03303	WE031 303A	MB031 303A		
Pe- riph- eral func- tions	A/D converter	4 channel × 10-bit resolution A/D conversion time : 15.2 μs (MB89965, MB89P965A, MB89F969A) 13.2 μs (MB89PV960) Continuous activation is available using the output from the 8/16-bit timer/counter or timebase timer. Reference voltage input (AVR)				
	Clock prescaler	15-bit Interrupt interval : 31.2	5 ms, 0.25 s, 0.50 s,	1.00 s (for a 32.768 k⊦	łz sub-clock)	
	oower consump- standby modes)	Sleep mode, stop mod	e, and clock mode			
Proce	SS	CMOS				
Opera	ating voltage	3.5 V to 5.5 V				

* : Use the MBM27C256A-20TVM as the external ROM (Operating voltage : 4.5 V to 5.5 V)

Note : Unless otherwise stated, clock periods and conversion times are for 10 MHz operation with the main clock operating at maximum speed.

■ PACKAGES AND CORRESPONDING PRODUCTS

Part No. Package	MB89965	MB89P965A	MB89F969A	MB89PV960
FPT-48P-M05	0	0	×	×
FPT-48P-M13	0	0	×	×
FPT-48P-M16	0	0	×	×
FPT-64P-M09	×	×	0	×
MQP-48C-P01	×	×	×	0

 $\, \odot \,$: Available

× : Not available

DIFFERENCES AMONG PRODUCTS

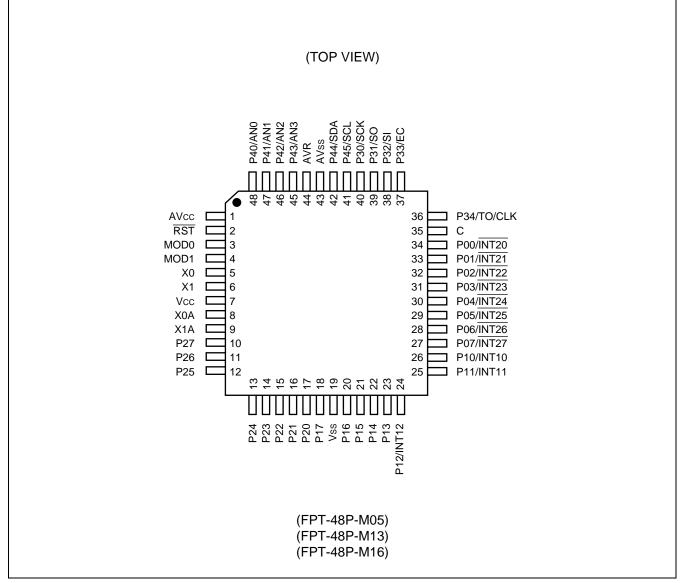
1. Memory Space

Please take note of the differences among products before testing and developing software for the MB89960 series.

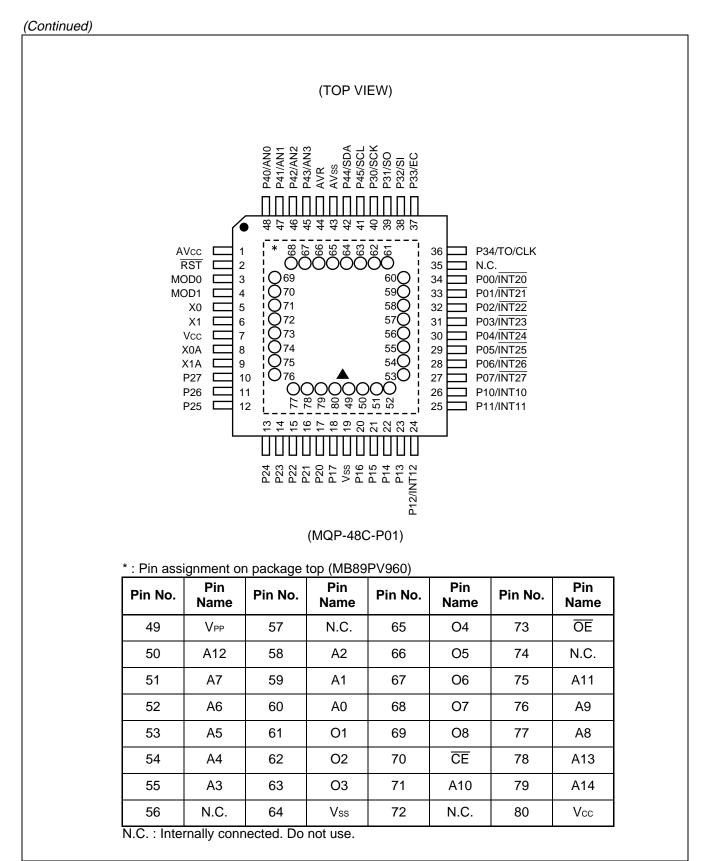
- The RAM and ROM configurations differ among products.
- If the bottom stack address is set at the top RAM address, this will need to be relocated if changing to a different product.

2. Current Consumption

- In the case of the MB89PV960, add the current consumed by the EPROM which is connected to the top socket.
- When operated at low speed, one-time PROM and EPROM products will consume more current than mask ROM products. However, the current consumption in sleep/stop modes is the same.

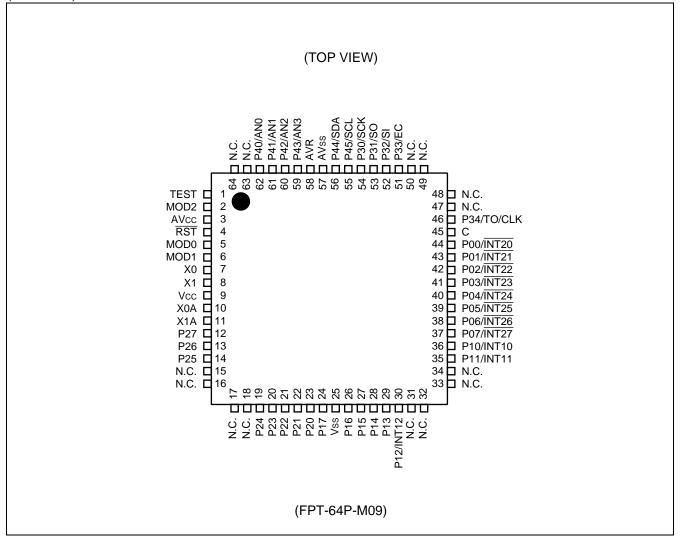

3. Functional Differences Between MB89960 Series

	MB89965/P965A/F969A	MB89PV960
Power-on reset delay time	Regulator stabilization delay time, regulator recovery time, oscillation stabilization delay time	Oscillation stabilization delay time
External reset delay time in stop/ sub-clock mode or external interrupt delay time in main stop mode	Regulator recovery time, oscillation stabilization delay time	Oscillation stabilization delay time
Port pin pull-up resistors	Software-selectable	Not available
A/D conversion time	38 instruction cycles	33 instruction cycles
I ² C noise elimination circuit	Always present regardless of ICCR : DMPB bit setting	Disabled if ICCR : DMPB bit = "1"


4. Mask Options

Functions that can be selected as options and the methods used to specify these options vary by the product. Before using mask options, check section "

■ PIN ASSIGNMENT



(Continued)

(Continued)

■ PIN DESCRIPTIONS

	Pin No.			0		
MQFP-48*3	LQFP-48*1 QFP-48*2	LQFP-64*4	Pin Name	Circuit Type	Function	
5	5	7	X0		Oscillator connection pins for the main clock	
6	6	8	X1	A	cillator (crystal oscillator or similar) . When using an external clock, input the clock signal to X0 and leave X1 open.	
8	8	10	X0A		Oscillator connection pins for the sub-clock os-	
9	9	11	X1A	В	cillator (crystal oscillator or similar) . When using an external clock (low speed : 32.768 kHz) , input the clock signal to X0A and leave X1A open.	
3	3	5	MOD0	С	Input pins for setting the memory access mode.	
4	4	6	MOD1	C	Connect directly to Vss.	
2	2	4	RST	D	Reset I/O pin This is an N-ch open-drain output type with pull- up resistor and a hysteresis input type. The pin outputs "L" when an internal reset is present. Similarly, inputting "L" initializes the internal cir- cuits.	
27 to 34	27 to 34	37 to 44	P00/INT20 to P07/INT27	E	General-purpose I/O ports Also serves as the external interrupt 2 inputs (wakeup inputs). The external interrupt 2 inputs are hysteresis inputs.	
24 to 26	24 to 26	30, 35, 36	P10/INT10 to P12/INT12	E	General-purpose I/O ports Also serves as the external interrupt 1 inputs (wakeup inputs). The external interrupt 1 inputs are hysteresis inputs.	
18, 20 to 23	18, 20 to 23	24, 26 to 29	P13 to P17	E	General-purpose I/O ports	
10 to 17	10 to 17	12 to 14 19 to 23	P20 to P27	G	General-purpose outoput-only ports	
40	40	54	P30/SCK	F	General-purpose I/O port Also serves as the serial clock I/O. A hysteresis input.	
39	39	53	P31/SO	F	General-purpose I/O port Also serves as the serial I/O data output. A hysteresis input.	

*1 : FPT-48P-M05

*2 : FPT-48P-M16, FPT-48P-M13

*3 : MQP-48C-P01

*4 : FPT-64P-M09

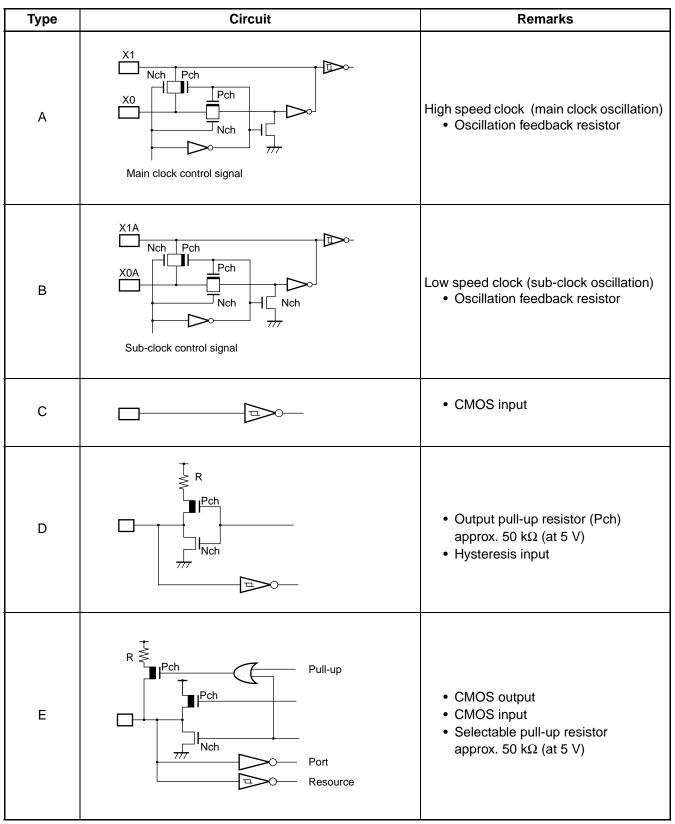
(Continued)

(Continued)

	Pin No.			O inevit	
MQFP-48 ^{*3}	LQFP-48 ^{*1} QFP-48 ^{*2}	LQFP-64*4	Pin Name	Circuit Type	Function
38	38	52	P32/SI	F	General-purpose I/O port Also serves as the serial I/O data input. A hysteresis input.
37	37	51	P33/EC	F	General-purpose I/O port Also serves as the external clock input for the 8/ 16-bit timer/counter. A hysteresis input.
36	36	46	P34/TO/ CLK	F	General-purpose I/O port Also serves as the overflow output for the 8/16- bit timer/counter and the CLK clock output. A hysteresis input.
—	35	45	С		Connect a 0.1 μF capacitor on the MB89965, MB89P965A, and MB89F969A.
45 to 48	45 to 48	59 to 62	P40/AN0 to P43/AN3	н	General-purpose Nch open-drain outputs. Also serves as the A/D converter analog inputs.
42	42	56	P44/SDA	I	General-purpose Nch open-drain output. Also serves as the I ² C interface data output.
41	41	55	P45/SCL	I	General-purpose Nch open-drain output. Also serves as the I ² C interface clock I/O.
7	7	9	Vcc		Power supply pin
19	19	25	Vss		Power supply (GND) pin
1	1	3	AVcc		A/D converter power supply pin Use this pin at the same voltage as Vcc.
44	44	58	AVR		A/D converter reference voltage input pin
43	43	57	AVss		A/D converter power supply pin Use this pin at the same voltage as Vss.
35		15 to 18 31 to 34 47 to 50 63, 64	N.C.		These pins are not connected. Do not connect these on the MB89PV960.
—		1	TEST	С	TEST pin. Connect directly to Vss. Only used on the MB89F969A. Treat as an N.C. pin on the MB89965.
		2	MOD2	С	Memory access mode setting pin. Connect directly to V_{ss} . Only used on the MB89F969A. Treat as an N.C. pin on the MB89965.

*1 : FPT-48P-M05

*2 : FPT-48P-M16, FPT-48P-M13


*3 : MQP-48C-P01

*4 : FPT-64P-M09

Pin No.	Pin Name	I/O	Function
49	Vpp	0	"H" level output pin
50 51 52 53 54 55	A12 A7 A6 A5 A4 A3	0	Address output pins
58 59 60	A2 A1 A0	0	Address output pins
61 62 63	01 02 03	I	Data input pins
64	Vss		Power supply (GND) pin
65 66 67 68 69	O4 O5 O6 O7 O8	I	Data input pins
70	CE	0	ROM chip enable pin Outputs "H" during standby mode.
71	A10	0	Address output pin
73	ŌĒ	0	ROM output enable pin Always outputs "L".
75 76 77 78 79	A11 A9 A8 A13 A14	0	Address output pins
80	Vcc		EPROM power supply pin
56 57 72 74	N.C.		Internally connected pins Always leave open circuit.

• Pin Descriptions for External EPROM (MB89PV960 only)

■ I/O CIRCUIT TYPE

(Continued)

Туре	Circuit	Remarks
F	R Pch Pull-up Pull-up Nch Resource	 CMOS output Hysteresis input Selectable pull-up resistor approx. 50 kΩ (at 5 V)
G	Pch Nch	CMOS output
Н	R Pull-up Pull-up Nch Analog input	 Nch-open drain output Analog input (A/D converter) Selectable pull-up resistor (The pull-up resistor cannot be used when used as an analog input.) approx. 50 kΩ (at 5 V)
I	Nch SMB buffer 777 SMB input I ² C buffer I ² C input	 Nch open drain output Selectable SMB or I²C input buffer

HANDLING DEVICES

1. Do not exceed maximum rated voltage (to prevent latch-up)

Latch-up may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input or output pins other than medium- and high voltage pins or if the voltage applied between Vcc and Vss higher the rating. If latch-up occurs, the power supply current increases rapidly resulting in thermal damage to circuit elements. Therefore, ensure that maximum ratings are not exceeded in circuit operation.

Similarly, when turning the analog power supply on or off, ensure the analog power supply voltages (AVcc and AVR) and analog input voltages do not exceed the digital power supply (Vcc).

2. Power supply voltage fluctuations

Rapid fluctuation of the voltage may cause the device to misoperate, even if the voltage remains within the allowed operating range.

The standard for power supply voltage stability is a peak-to-peak V_{CC} ripple voltage at the mains supply frequency (50 to 60 Hz) of 10% or less of V_{CC} and a transient voltage change rate of 0.1 V/ms or less such as when turning the power supply on or off.

3. Treatment of unused input pins

Leaving unused input pins unconnected can cause misoperation or permanent damage to the device due to latchup. Always pull-up or pull-down unused input pins using a 2 k Ω or larger resistor.

If some I/O pins are unused, either set as outputs and leave open circuit or set as inputs and treat in the same way as input pins.

4. Treatment of N.C. pins

Always leave N.C. (internally connected) pins open.

5. Treatment of power supply pins on microcontrollers with an A/D converter

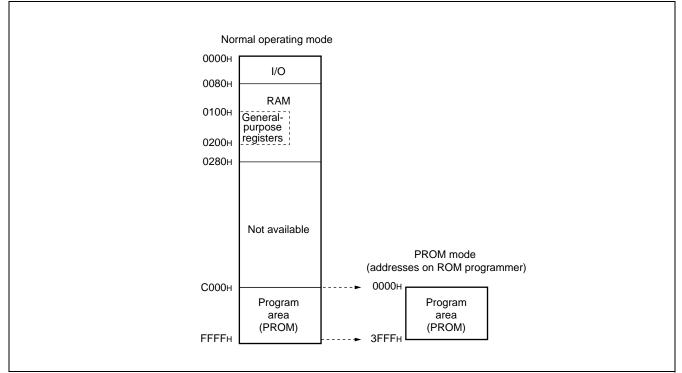
Even if not using the A/D converter, connect to be AVcc = Vcc and AVss = AVR = Vss.

6. Precautions on using an external clock

An oscillation stabilization delay occurs after a power-on reset or when recovering from sub-clock or stop mode, even if an external clock is used.

■ PROGRAMMING SPECIFICATIONS FOR ONE-TIME PROM PRODUCTS

The MB89P965A has a "PROM mode" that enables the microcontroller to be programmed using a generalpurpose ROM programmer via a special adaptor. Note, however, that electronic signature mode is not available.


1. ROM Programmer Adaptor and Recommended ROM Writers

Package Name	Adaptor Part No.	Recommended Programmer Manufacturer and Model
Fackage Name	Sun Hayato Co. Ltd.	Ando Denki Co. Ltd.
FPT-48P-M05	ROM2-48LQF-32DP-8LA	
FPT-48P-M13	ROM2-48QF2-32DP-8LA	AF9708 (ver 1.44 or later) AF9709 (ver 1.44 or later)
FPT-48P-M16	ROM2-48QF-32DP-8LA	

Enquiries

Sun Hayato Co. Ltd. : TEL 03-3986-0403 Ando Denki Co. Ltd. : TEL 044-549-7300

2. PROM Mode Memory Map

3. PROM Programming Procedure (When using an Ando EPROM programmer)

- 1) Set the EPROM programmer type code to 17209.
- 2) Load the program data into addresses 0000^H to 3FFF^H in the EPROM programmer.
- 3) Use the EPROM programmer to program to addresses C000_H to FFFF_H.

4. Programming Yield

Due to the nature of OTPROM memory, a program test to all bits on a blank OTPROM microcontroller cannot be performed at Fujitsu. For this reason, a programming yield of 100% cannot be assured at all times.

■ PROGRAMMING AND ERASING FLASH MEMORY ON THE MB89F969A

1. Flash Memory

The flash memory is located between 1000_H and FFFF_H in the CPU memory map and incorporates a flash memory interface circuit that allows read access and program access from the CPU to be performed in the same way as mask ROM. Programming and erasing flash memory is also performed via the flash memory interface circuit by executing instructions in the CPU. This enables the flash memory to be updated in place under the control of the CPU, providing an efficient method of updating program and data.

2. Flash Memory Features

- 60 K byte × 8-bit configuration (16 K + 8 K + 8 K + 28 K sectors)
- Automatic programming algorithm (Embedded algorithm* : Equivalent to MBM29LV200)
- Includes an erase pause and restart function
- Data polling and toggle bit for detection of program/erase completion
- Detection of program/erase completion via CPU interrupt
- Compatible with JEDEC-standard commands
- Sector Protection (sectors can be combined in any combination)
- No. of program/erase cycles : 10,000 (min.)

Embedded Algorithm is a trademark of Advanced Micro Devices.

3. Procedure for Programming and Erasing Flash Memory

Programming and reading flash memory cannot be performed at the same time. Accordingly, to program or erase flash memory, the program must first be copied from flash memory to RAM so that programming can be performed without program access from flash memory.

4. Flash Memory Register

• Control status register (FMCS)

Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Initial
002Ен	INTE	RDYINT	WE	RDY	Reserved	Reserved		Reserved	000X00
	R/W	R/W	R/W	R	R/W	R/W	_	R/W	

5. Sector Configuration

The table below shows the sector configuration of flash memory and lists the addresses of each sector for both during CPU access a flash memory programming.

• Sector configuration of flash memory

Flash Memory	CPU Address	Programmer Address
16 K bytes	FFFFн to C000н	1FFFFн to 1C000н
8 K bytes	BFFF _H to A000 _H	1BFFFн to 1A000н
8 K bytes	9FFFн to 8000н	19FFFн to 18000н
28 K bytes	7FFFн to 1000н	17FFFн to 11000н

* : Programmer address

The programmer address is the address to be used instead of the CPU address when programming data from a parallel flash memory programmer. Use the programmer address on programming or erasing using a general-purpose parallel programmer.

6. ROM Programmer Adaptor and Recommended ROM Program

Package Name	Adaptor Part No.	Recommended Programmer Manufacturer and Model					
Fackage Name	Sun Hayato Co. Ltd.	Ando Denki Co. Ltd.					
FPT-64P-M09	FLASH-64QF2-32DP-8LF	AF9708 (ver 1.60 or later) AF9709 (ver 1.60 or later)					

Enquiries

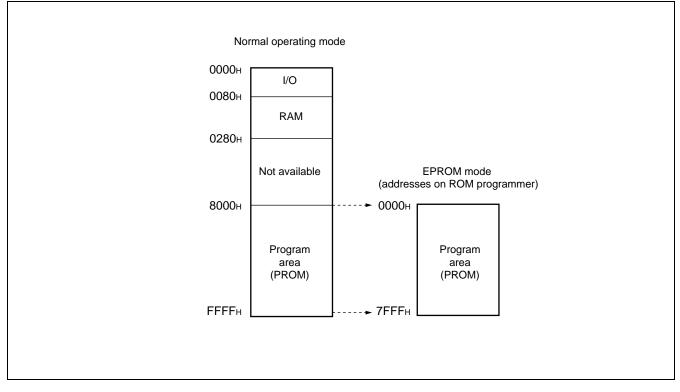
Sun Hayato Co. Ltd. : TEL 03-3986-0403 Ando Denki Co. Ltd. : TEL 044-549-7300

PROGRAMMING A PIGGYBACK/EVALUATION EPROM

1. EPROM Type

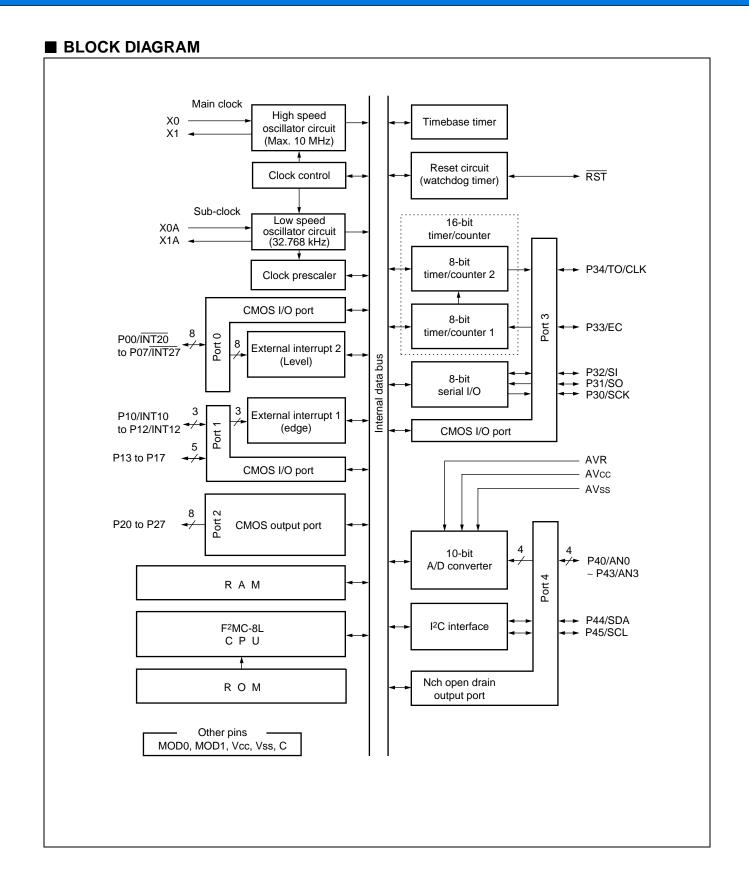
MBM27C256A-20TVM

2. Programming Adaptor


Use the following programming adaptor (made by Sun Hayato Co. Ltd.) to program the EPROM using a ROM programmer.

• Programming adaptor

Package	Adaptor Socket Part No.
LCC-32 (Square)	ROM-32LC-28DP-S
Enguiring Sup Houses Co. Ltd. TEL 02 2000 0402	

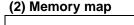

Enquiries Sun Hayato Co. Ltd. : TEL03-3986-0403

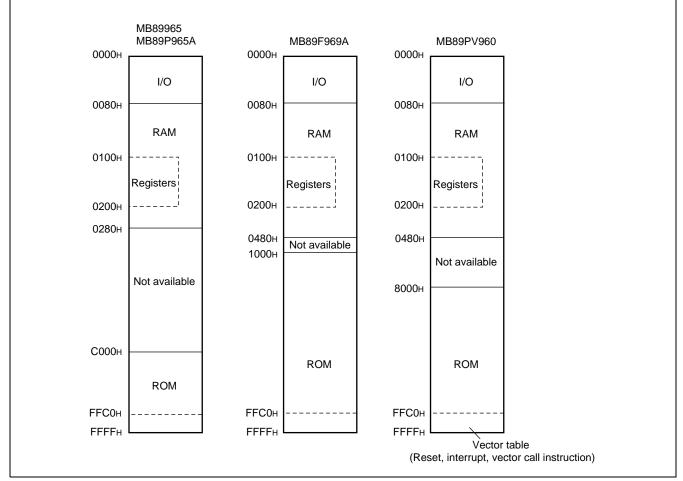
3. Memory Space

4. EPROM Programming Procedure

- (1) Setup the EPROM programmer to the MBM27C256A.
- (2) Load the program data into addresses 0000_H to 7FFF_H in the EPROM programmer.
- (3) Use the ROM programmer to program to addresses 0000H to 7FFFH.

CPU CORE

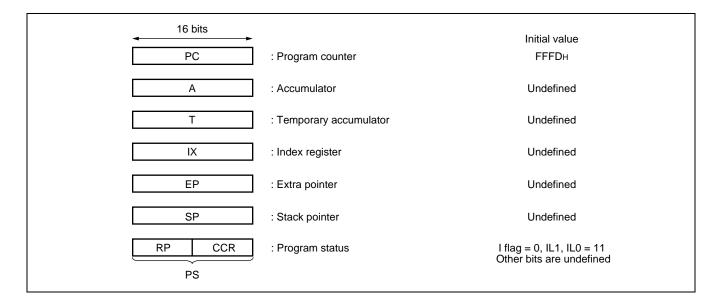

1. Memory Space

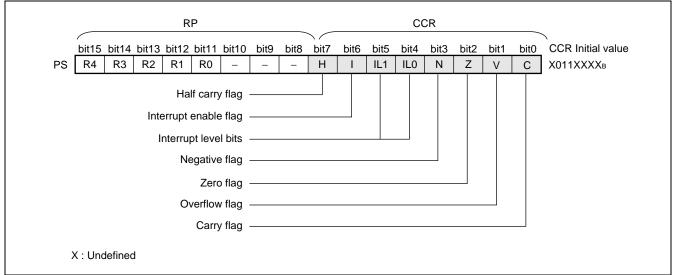

(1) Structure of memory space

- I/O area (address : 0000н to 007Fн)
- Assign the control registers, data registers, and similar of the internal peripheral functions.
- As the I/O area is allocated as part of the memory space, it can be accessed in the same way as memory. Direct addressing also provides high speed access.
- RAM area
- Static RAM is provided as an internal data area.
- The size of internal RAM differs between products.
- Addresses 80H to FFH provide high speed access using direct addressing.
- Addresses 100H to 1FFH are used as the general-purpose register area.
- The initial value of RAM after a reset is undefined.

• ROM area

- ROM memory is provided as the internal program area.
- The size of internal ROM differs between products.
- Addresses FFC0 ${\mbox{\tiny H}}$ to FFFF ${\mbox{\tiny H}}$ are used for the vector table and similar.




2. Registers

The MB89960 series provides two types of registers: dedicated registers in the CPU and general-purpose registers. The dedicated registers are as follows.

Program counter (PC)	: A 16-bit register for indicating the instruction storage positions.
Accumulator (A)	: A 16-bit register that provides temporary storage for arithmetic operations and similar. Instructions that operate on 8-bit data use the lower byte.
Temporary accumulator (T)	: A 16-bit register used for arithmetic operations with the accumulator. Instructions that operate on 8-bit data use the lower byte.
Index register (IX)	: A 16-bit register used for index modification.
Extra pointer (EP)	: A 16-bit pointer used for indicating a memory address.
Stack pointer (SP)	: A 16-bit register used for indicating a stack area.
Program status (PS)	: A 16-bit register used to store a register pointer and condition code.

The upper 8 bits of the PS contain the register bank pointer (RP) and the lower 8 bits contain the condition code register (CCR). (See the diagram below.)

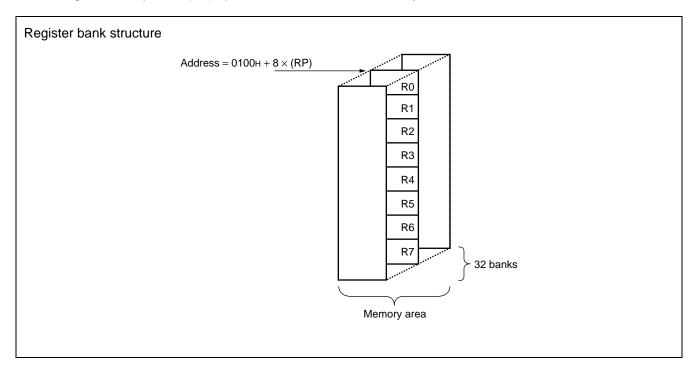
The RP contains the address of the currently used register bank. The conversion diagram below shows the relationship between the RP value and actual address.

Rules for converting of actual addresses of the general-purpose register area																	
										Upper (RP)		Lower (op code)		ode)			
		"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
		t	¥	¥	¥	¥	¥	¥	+	¥	¥	¥	¥	ŧ	¥	¥	+
	Actual address	A1	5 A14	1 A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

CCR contains bits that indicate the result of an arithmetic operation or information about transfer data and bits used to control CPU operation when an interrupt occurs.

- H-flag : Set to "1" when a carry from bit 3 to bit 4 or a borrow from bit 4 to bit 3 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions and should be ignored for operations other than addition and subtraction.
- I-flag : Interrupts are enabled when this flag is set to "1" and disabled when the flag is set to "0". Cleared to "0" by a reset.
- IL1, 0 : Indicates the level of interrupts currently allowed. The CPU only processes interrupts with a request level higher than the value indicated by these bits.

IL1	IL0	Interrupt Level	Priority
0	0	1	High
0	1	I	t
1	0	2	↓ ↓
1	1	3	Low = No interrupt


- N-flag : Set to "1" when the MSB of the result of an arithmetic operation is "1" and cleared to "0" when the MSB is "0".
- Z-flag : Set to "1" when the result of an arithmetic operation is zero. Cleared to "0" otherwise
- V-flag : Set to "1" when a 2's complement overflow occurs as the result of an arithmetic operation. Cleared to "0" if no 2's complement overflow occurs.
- C-flag : Set to "1" when a carry from bit 7 or a borrow to bit 7 occurs as the result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided :

General-purpose registers : 8-bit resisters for storing data

The general-purpose registers are 8-bit registers and are allocated in the register banks of the memory. Each bank contains 8 registers and all 32 banks can be used on MB89960 series microcontrollers.

The register bank pointer (RP) specifies the bank that is currently in use.

■ I/O MAP

Address	Abbreviation	Register Name	Read/Write	Initial Value
00н	PDR0	Port 0 data register	R/W	XXXXXXXXB
01н	DDR0	Port 0 direction register	W	0000000в
02н	PDR1	Port 1 data register	R/W	XXXXXXXXB
03н	DDR1	Port 1 direction register	W	0000000в
04н	PDR2	Port 2 data register	R/W	0000000в
05н				
06н		(Unused area)		
07н	SYCC	System clock control register	R/W	ХММ100в
08н	STBC	Standby control register	R/W	00010в
09н	WDTC	Watchdog control register	R/W	0ХХХХв
0Ан	TBTC	Timebase timer control register	R/W	00000в
0Вн	WPCR	Clock prescaler control register	R/W	00000в
0Сн	PDR3	Port 3 data register	R/W	XXXXXAB
0Dн	DDR3	Port 3 direction register	R/W	000000
0Ен	PDR4	Port 4 data register	R/W	111111 _В
0Fн		(Unused area)	I	
10н	IBSR	I ² C bus status register	R	0000000
11 н	IBCR	I ² C bus control register	R/W	00011000в
12н	ICCR	I ² C clock control register	R/W	000XXXXXB
13 н	IADR	I ² C address register	R/W	- XXXXXXXB
14 H	IDAR	I ² C data register	R/W	XXXXXXXXB
15 н	L L		L	
16 н		(Unused area)		
17 н				
18 H	T2CR	Timer 2 control register	R/W	Х0ХХХ0в
19 н	T1CR	Timer 1 control register	R/W	X000XXX0 _B
1Ан	T2DR	Timer 2 data register	R/W	XXXXXXXXB
1Bн	T1DR	Timer 1 data register	R/W	XXXXXXXXB
1Cн	SMR	Serial mode register	R/W	0000000
1Dн	SDR	Serial data register	R/W	XXXXXXXXB
1 Ен		<i>"</i>		
1 F н	1	(Unused area)		
20н	ADC1	A/D control register 1	R/W	00000-0в
21н	ADC2	A/D control register 2	R/W	-0000001в
22н	ADDH	A/D data register H	R/W	ХХв

(Continued)				
Address	Abbreviation	Register Name	Read/Write	Initial Value
23н	ADDL	A/D data register L	R/W	XXXXXXXXB
24н	EIC1	External interrupt 1 control register 1	R/W	0000000
25н	EIC2	External interrupt 1 control register 2	R/W	0000в
26н to 27н		(Unused area)	·	·
28н	PURR1	Pull-up resistor register 1 (MB89965, P965A, and F969A only)	R/W	11111111 _B
29н	PURR2	Pull-up resistor register 2 (MB89965, P965A, and F969A only)	R/W	11111111 _B
2Ан	PURR3	Pull-up resistor register 3 (MB89965, P965A, nd F969A only)	R/W	XXX11111 _B
2Вн	PURR4	Pull-up resistor register 4 (MB89965, P965A, and F969A only)	R/W	XXXX1111 _B
2Cн to 31н		(Unused area)	·	·
32н	EIE2	External interrupt 2 control register	R/W	00000000
33н	EIF2	External interrupt 2 flag register	R/W	Ов
34н to 7Вн		(Unused area)	·	·
7Сн	ILR1	Interrupt level setting register 1	W	11111111
7Dн	ILR2	Interrupt level setting register 2	W	11111111
7 Ен	ILR3	Interrupt level setting register 3	W	11111111
7F н	ITR	Interrupt test register	Not available	XXXXXX00B

• Read/write notation

R/W : Reading and writing available

- R : Read-only
- W : Write-only

• Initial value notation

- 0 : Initial value of bit is "0".
- 1 : Initial value of bit is "1".

X : Initial value of bit is undefined.

- M : Initial value of bit is specified by mask option.
- : Bit is not used.

Note : Do not use the "unused areas".

ELECTRICAL CHARACTERISTICS

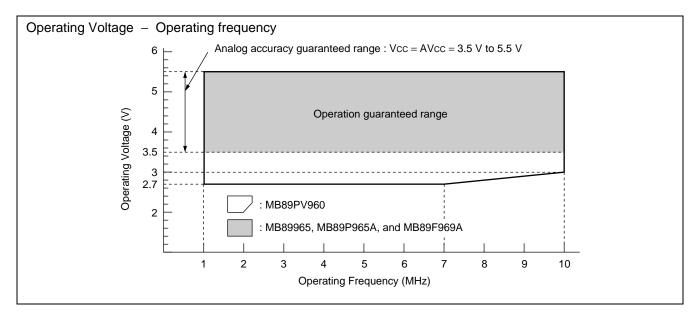
1. Absolute Maximum Ratings

(AVss = Vss = 0.0 V)

Parameter	Symbol	Rat	ing	Unit	Remarks
Falameter	Symbol	Min.	Max.	Unit	reina ks
Power supply voltage	Vcc AVcc	Vss - 0.3	Vss + 6.0	V	*
	AVR	Vss - 0.3	Vss + 6.0		
Input voltage	Vi	Vss - 0.3	Vcc + 0.3	V	Pins other than P44 and P55
input voltage	VI	Vss - 0.3	Vss + 6.0	V	Pins P44 and P45
	Vo	Vss - 0.3	Vcc + 0.3	V	Pins other than P44 and P55
Output voltage	Vo	Vss - 0.3	Vss + 6.0	V	Pins P44 and P45
"L" level maximum output current	lo∟		15	mA	
"L" level average output current	Iolav		4	mA	Average value (operating cur- rent × operating ratio)
"L" level total maximum output current	ΣΙοι	_	100	mA	
"L" level total average output current	ΣΙοιαν		40	mA	Average value (operating cur- rent × operating ratio)
"H" level maximum output current	Іон	_	-15	mA	
"H" level average output current	Іонач		-4	mA	Average value (operating cur- rent × operating ratio)
"H" level total maximum output current	ΣІон	_	-50	mA	
"H" level total average output current	ΣΙοήαν	_	-20	mA	Average value (operating cur- rent × operating ratio)
Power concumption	P⊳	_	300	m\//	
Power consumption	rD		450	mW	MB89F969A only
Operating temperature	TA	-40	+85	°C	
Storage temperature	Tstg	-55	+150	°C	

* : Set AVcc to the same potential as Vcc.

Also ensure that AVcc does not exceed Vcc at power on.


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Va	lue	Unit	Remarks		
Farameter	Symbol	Min.	Max.	Unit	Reliains		
		3.5*	5.5*	V	Normal operation guaranteed range (MB89965/P965A/F969A)		
	Vcc AVcc	3.0	5.5	V	To maintain RAM state in stop mode (MB89965/P965A/F969A)		
Power supply voltage		2.7*	5.5*	V	Normal operation guaranteed range (MB89PV960)		
		1.5	5.5	V	To maintain RAM state in stop mode (MB89PV960)		
	AVR	3.5	AVcc	V			
Operating temperature	TA	-40	+85	°C			

* : Differs depending on the operating frequency and analog guaranteed range. See the figure below and "5. Electrical Characteristics for the A/D Converter".

The figure above shows the frequency of the external oscillator when the instruction cycle setting is 4/Fc. As the operating voltage depends on the instruction cycle, change to the new instruction cycle value if using the gear function to change the operating speed.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

_	Sym-				Value	0.0 7, 14 -		°C to +85 °C)
Parameter	bol	Pin Name	Condition	Min.	Тур.	Max.	Unit	Remarks
	Vін	P00 to P07, P10 to P17, P30 to P34		0.7 Vcc	_	Vcc + 0.3	V	
"H" level input	ViHs	RST, INT20 to INT27, INT10 to INT12, SI, SCK, EC, TEST	_	0.8 Vcc	_	Vcc + 0.3	V	
voltage	Vінм	MOD0/1/2		Vcc-0.3		Vcc + 0.3	V	MOD pin input
	VIHSMB			Vss + 1.4		Vss + 5.5	V	When SMB selected
	VIHI2C	SCL, SDA		0.7 Vcc		Vss + 5.5	V	When I ² C selected
	Vı∟	P00 to P07, P10 to P17, P30 to P34		Vss – 0.3		0.3 Vcc	V	
"L" level input	Vils	RST, INT20 to INT27, INT10 to INT12, SI, SCK, EC, TEST	_	Vss - 0.3		0.2 Vcc	V	
voltage	VILM	MOD0/1/2		Vss - 0.3		Vss + 0.3	V	MOD pin input
	VILSMB	SCL, SDA		Vss - 0.3		Vss + 0.6	V	When SMB selected
	VILI2C	JOL, JDA		$V_{\text{SS}}-0.3$	_	0.3 Vcc	V	When I ² C selected
Voltage applied to open drain output pins	VD	P40 to P45	_	Vss - 0.3		Vcc + 0.3	V	
"H" level output voltage	Vон	P00 to P07, P10 to P17, P20 to P27, P30 to P34	Іон = -2.0 mA	4.0		_	V	
"L" level output voltage	Vol	P00 to P07, P10 to P17, P20 to P27, P30 to P34, P40 to P45, RST	lo∟ = 4.0 mA			0.4	V	

(AVcc = Vcc = 5.0 V, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)

(Continued)

Parameter	Sym-	Pin Name	Condition		Value		Unit	Remarks	
Farameter	bol	Fin Name	Condition	Min.	Тур.	Max.	Unit	Remarks	
Input leak current	Iц	P00 to P07, P10 to P17, P20 to P27, P30 to P34, P40 to P45	0 V < Vı < Vcc	-5		+5	μΑ	Without pull- up resistor option	
		MOD0/1/2, TEST		-10		+10			
Open-drain output leak current	ILIOD	P40 to P45	0 V < VI < Vss + 5.5 V	_	_	+5	μA		
Pull-up resistance	Rpull	P00 to P07, P10 to P17, P20 to P27, P30 to P34, P40 to P45, RST	Vı = 0.0 V	25	50	100	Ω	With pull-up resistor option	
			FcH = 10.0 MHz tιΝsτ ^{*2} = 0.4 μs main run mode		10	20		MB89PV960	
	Icc1	1			4	7	mA	MB89965 MB89P965A	
					5	8		MB89F969A	
_		Vcc	Fсн = 10.0 MHz		3	8		MB89PV960	
Power supply current*1	Icc2	(when using an external clock)	$F_{CH} = 10.0 \text{ MHz}$ $t_{INST}^{*2} = 6.4 \ \mu \text{s}$ main run mode	_	1	3	mA	MB89965 MB89P965A MB89F969A	
		1	F сн = 10.0 MHz	—	3	8		MB89PV960	
	Iccs1		$F_{CH} = 10.0 \text{ MHz}$ $t_{INST}^{*2} = 0.4 \ \mu \text{s}$ main sleep mode		2	4	mA	MB89965 MB89P965A MB89F969A	

(AVcc = Vcc = 5.0 V, AVss = Vss = 0.0 V, T_A = -40 \ ^{\circ}C to +85 $^{\circ}C$)

(Continued)

(Continued)

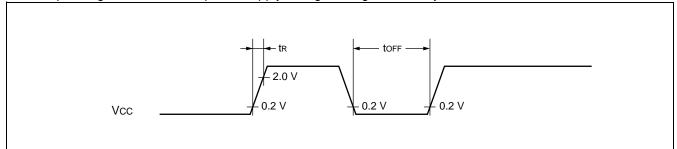
(Continueu)			(AVcc = Vcc = Vccc = Vcc = V	5.0 V, AV	/ss = Vss =	= 0.0 V, T	Γ _Α = -4	0 °C to +85 °C)		
Parameter	Sym-	Pin Name	Condition	Value			Unit	Remarks		
Tarameter	bol		Condition	Min.	Тур.	Max.	Unit	Remarks		
	Iccs2		$F_{CH} = 10.0 \text{ MHz}$ $t_{INST}^{*2} = 6.4 \ \mu s$ main sleep mode		1	3	mA			
	Iccl			_	70	150	μA	MB89PV960		
			Fсн = 32.768 kHz	_	20	100	μΑ	MB89965		
Power supply current*1		ICCL	ICCL	ICCL	Vcc	sub run mode		0.3	1	mA
	Iccls	(when using an external	Fсн = 32.768 kHz sub sleep mode		10	50	μΑ			
	Ісст	clock)	F _{CH} = 32.768 kHz • clock mode, main stop mode		5	15	μA			
					1	10		MB89PV960		
	Іссн		T _A = +25 °C ● sub stop mode	_	5	10	μA	MB89965 MB89P965A MB89F969A		
Input capacitance	CIN	Except AVcc, AVss, Vcc, and AVss	f = 1 MHz		10		pF			

*1 : The power supply current values are for an external clock.

*2 : See " (4) Instruction Cycle" in "4. AC Characteristics".

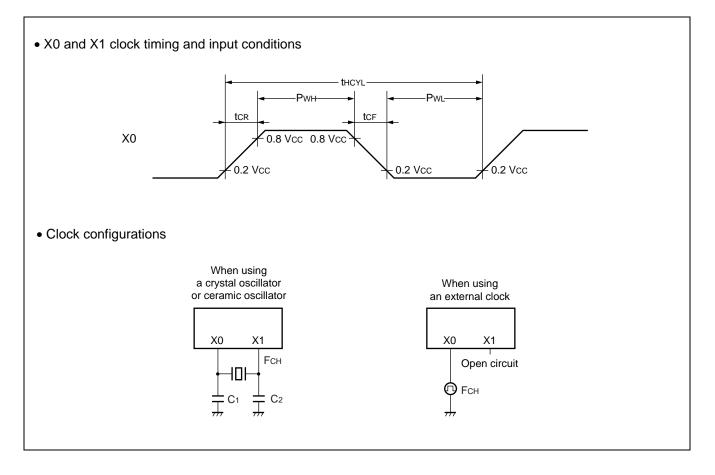
4. AC Characteristics

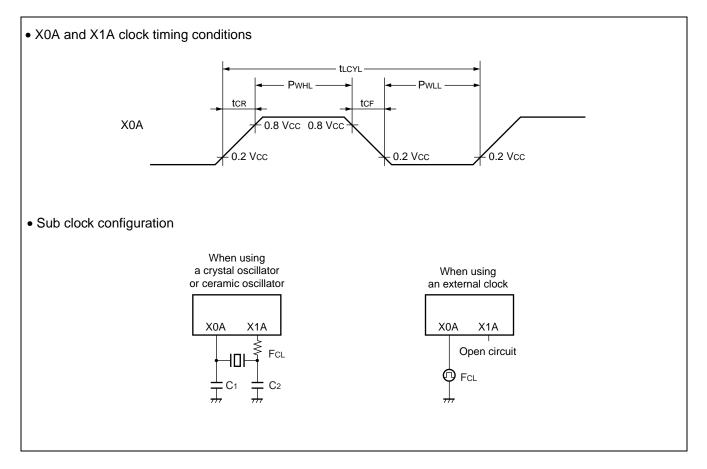
(1) Reset Timing


 $(V_{CC} = 5.0 \text{ V}, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$ Value Condition Parameter Symbol Unit Remarks Min. Max. RST "L" pulse width **t**zlzh 48 tHCYL* ns * : t_{HCYL} is the period (1/Fc) of the oscillation input to X0. **t**ZLZH RST 0.2 Vcc 0.2 Vcc

(2) Power-On Reset

 $(AV_{SS} = V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

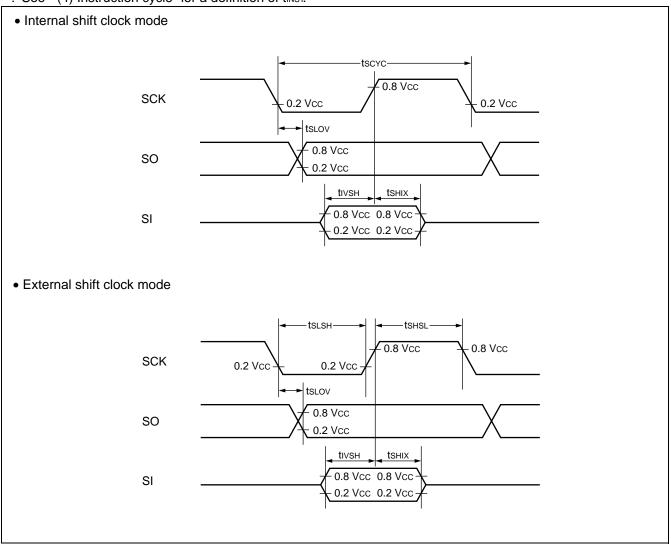

Parameter	Svmbol	Condition	Va	lue	Unit	Remarks	
Farameter	Symbol	Condition	Min.	Max.	Onic		
Power supply rising time	tR	—	0.5	50	ms		
Power supply cutoff time	toff		1		ns	For repeated operation	


Note : Ensure that the power supply rising time is less than the selected oscillation stabilization delay time. For example, if the main clock frequency $F_c = 10$ MHz and $2^{14}/F_c$ is selected as the oscillation stabilization delay time, the resulting oscillation stabilization delay time is 1.6 ms. As rapid changes in the power supply voltage may cause a power-on reset, if you need to change the power supply voltage while the device is operating, ensure that the power supply voltage changes smoothly.

(3) Clock Timings

$(AV_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$								
Parameter	Symbol	Pin Name	Value			Unit	Remarks	
T arameter			Min.	Тур.	Max.	Onit	Remarks	
Clock frequency	Fсн	X0, X1	1		10	MHz	Main clock	
Clock frequency	Fc∟	X0A, X1A	—	32.768	—	kHz	Sub clock	
	t HCYL	X0, X1	100	_	1000	ns	Main clock	
Clock cycle time	t LCYL	X0A, X1A		30.5		μs	Sub clock	
Input clock pulse width	Р _{WH} Рw∟	X0	20			ns	External clock	
	Pwhl Pwll	X0A	_	15.2		μs	External clock	
Input clock rising/falling time	tcr tcr	X0			10	ns	External clock	

(4) Instruction Cycle

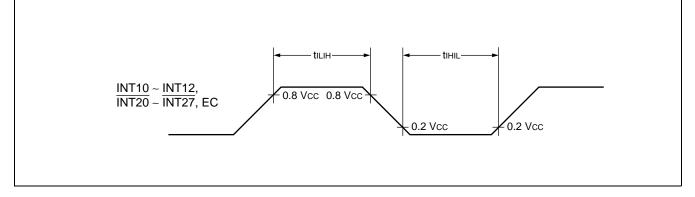

(AVss = Vss = 0.0 V, $T_A = -40 \ ^{\circ}C$ to +85 $^{\circ}C$)

Parameter	Symbol	Value	Unit	Remarks
Instruction cycle (Minimum instruction execution time)	tinst	4/Fсн, 8/Fсн, 16/Fсн, 64/Fсн		$F_{CH} = 10 \text{ MHz} (4/F_{CH}) \text{ operation}$ time t _{INST} = 0.4 µs
		2/FcL	μs	$F_{CL} = 32.768$ kHz operation time t _{INST} = 61.036 µs

(5) Serial I/O Timings

			(Vcc = 5.0 \	/, AVss = Vss	$s = 0.0 V, T_A$	= -40 °C	C to +85 °C)
Parameter	Sym- bol	Pin Name	Condition	Value		Unit	Remarks
T di diffetei				Min.	Max.	Onit	itemarks
Serial clock cycle time	tscyc	SCK	Internal clock operation	2 t INST*	_	μs	
$SCK \downarrow \to SO$ delay time	tslov	SCK, SO		-200	200	ns	
Valid SI \rightarrow SCK \uparrow	tıvsн	SCK, SI		200		ns	
$SCK \uparrow \to valid \ SI \ hold \ time$	tsнix	SCK, SI		200	_	ns	
Serial clock "H" pulse width	ts∺s∟	SCK	External clock operation	tinst*	_	μs	
Serial clock "L" pulse width	tslsh	SCK		tinst*		μs	
$SCK \downarrow \to SO$ delay time	tslov	SCK, SO		0	200	ns	
$Valid\;SI\toSCK$	t ivsh	SCK, SI		200		μs	
SCK $\uparrow \rightarrow$ valid SI hold time	tsнix	SCK, SI		200		μs	

*: See " (4) Instruction cycle" for a definition of tINST.

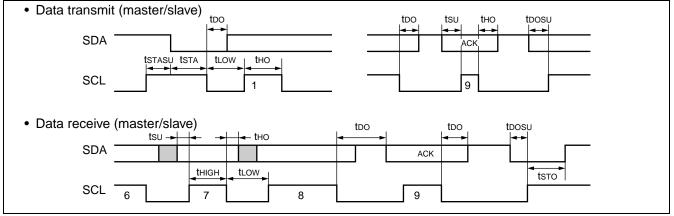


(6) Peripheral Input Timings

(Vcc = 5.0 V, AVss = Vss = 0.0 V, T_A = -40 °C to +85 °C)

Parameter	Symbol	Pin Name	Va	lue	Unit	Remarks
Faianietei	Symbol	Fill Naille	Min.	Max.		
Peripheral input "H" pulse width	tiliн	INT10 to INT12,	2 t INST*	—	μs	
Peripheral input "L" pulse width	tını∟	INT20 to INT27, EC	2 t INST*		μs	

*: See " (4) Instruction cycle" for a definition of tINST.


(7) I²C Timings

Value Sym Parameter Pin Unit Remarks bol Min. Max. Start condition SCL $1/4t_{INST}^{*1} \times m^* \times n^{*3} - 20$ $1/4t_{INST}^{*1} \times m^{*2} \times n^{*3} + 20$ Master mode **t**sta ns output SDA Stop condition SCL $1/4t_{INST}^{*1} \times (m^{*2} \times n^{*3} + 8)$ $1/4t_{INST}^{*1} \times (m^{*2} \times n^{*3} + 8) +$ Master mode **t**sto ns output SDA - 20 20 Start condition SCL **t**sta $1/4t_{INST}^{*1} \times 6 + 40$ ns SDA detect Stop condition SCL $1/4t_{INST}^{*1} \times 6 + 40$ **t**sto ns detect SDA Restart condition out- $1/4t_{INST}^{*1} \times (m^{*2} \times n^{*3} + 8)$ $1/4t_{INST}^{*1} \times (m^{*2} \times n^{*3} + 8) +$ SCL **t**stasu Master mode ns put SDA - 20 20 Restart condition de-SCL $1/4t_{INST}^{*1} \times 4+40$ **t**STASU ns SDA tect SCL output "L" width SCL $1/4t_{\text{INST}}^{\star1}\times m^{\star2}\times n^{\star3}-20$ $1/4t_{INST}^{*1} \times m^{*2} \times n^{*3} + 20$ Master mode **t**LOW ns $1/4t_{INST}^{*1} \times (m^{*2} \times n^{*3} + 8)$ $1/4t_{INST}^{*1} \times (m^{*2} \times n^{*3} + 8) +$ SCL SCL output "H" width Master mode **t**HIGH ns - 20 20 SDA output delay SDA $1/4t_{INST}^{*1} \times 4 - 20$ $1/4t_{INST}^{*1} \times 4 + 20$ t_{DO} ns SDA output setup toosu SDA $1/4t_{INST}^{*1} \times 4 - 20$ ns time after interrupt SCL input "L" pulse SCL $1/4t_{INST}^{*1} \times 6 + 40$ **t**LOW ns width SCL input "H" pulse SCL $1/4t_{INST}^{*1} \times 2 + 40$ thigh ns width SDA input setup time SDA 40 ts∪ ____ ns SDA hold time tнo SDA 0 ns

*1: See " (4) Instruction cycle" for a definition of tINST.

*2: m is the value set in the ICCR : CS4 and CS3 bits (bits 4 to 3).

*3: n is the value set in the ICCR : CS2 to CS0 bits (bits 2 to 0) .

5. Electrical Characteristics for the A/D Converter

-	1	ī	(AV0	cc = 3.5 V to 5	-	$Vss = 0.0 V, T_{e}$	x = -40	°C to +85 °C)
Parameter	Sym	Pin	Condition	Value			Unit	Remarks
rarameter	bol	• •••		Min.	Тур.	Max.	onin	Remarks
Resolution			—	—	_	10	bit	
Total error				-5.0	_	+5.0	LSB	
Non-linearity error] —		AVR = Avcc	-2.5	_	+2.5	LSB	
Differential linearity error				-1.9		+1.9	LSB	
Zero transition voltage	Vот			AVR – 3.5 LSB	AVR + 0.5 LSB	AVR + 4.5 LSB	mV	
Full-scale transition voltage	Vfst			Vcc – 6.5 LSB	Vcc – 1.5 LSB	Vcc + 1.5 LSB	mV	
Variation between channels	_					4	LSB	
A/D mode conversion time*2					60 tinst*1		μs	MB89965 MB89P965A MB89F969A
				—	38 tinst*1	—	μs	MB89PV960
A/D sampling time					16 tinst*1		μs	
Analog input current	Iain	AN0			_	10	μΑ	
Analog input voltage range	Vain	to AN3		AVss		AVR	V	
	la		A/D operation	—	1.5	3	mA	
Power supply current	Іан	Avcc	$T_A = +25 \ ^{\circ}C$ A/D stop	_	1	5	μA	
Reference voltage				AVss + 3.5	_	AVcc	V	
Reference voltage	IR	AVR	A/D operation		400		μA	
supply current	Irh		A/D stop			5	μA	

 $2 E \sqrt{t_0} E E \sqrt{\Lambda} \sqrt{t_0}$ 10 °C to 195 °C)

*1 : See " (4) Instruction cycle" for a definition of $t_{\text{INST.}}$

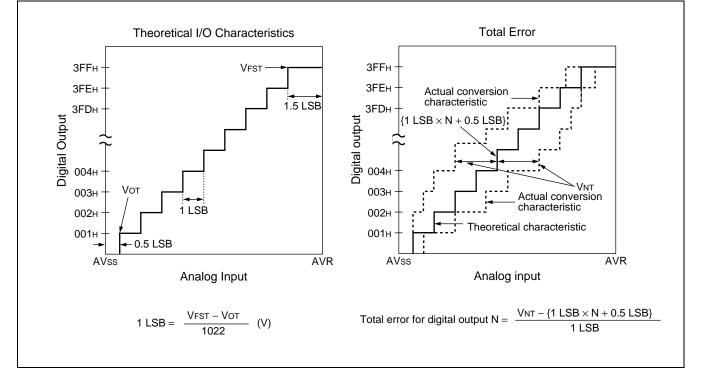
*2 : Includes sampling time.

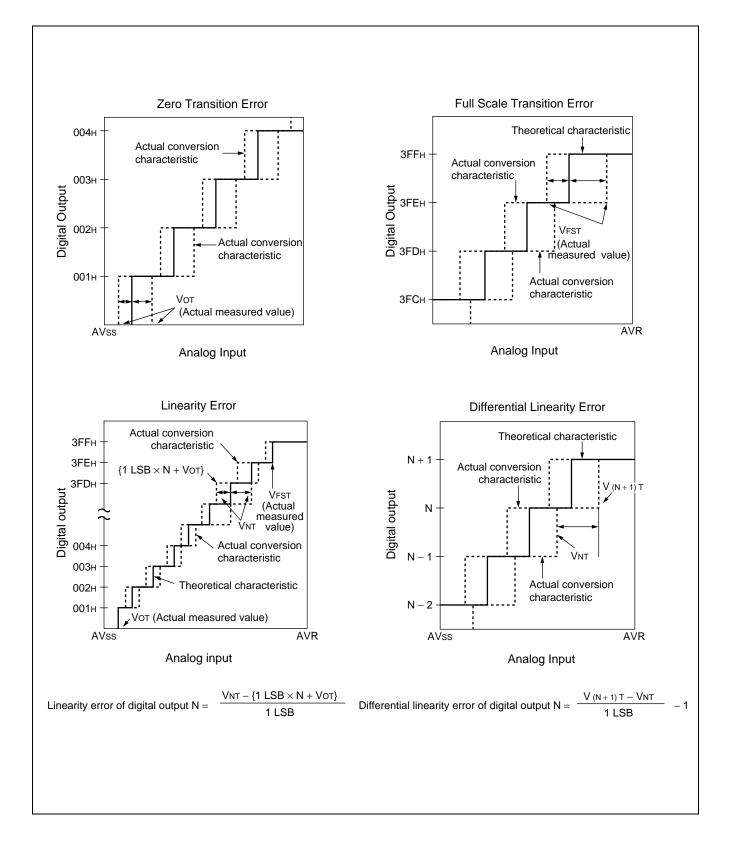
6. A/D Converter Glossary

Resolution

The change in analog voltage that can be recognized by the A/D converter.

• Linearity error (unit : LSB)

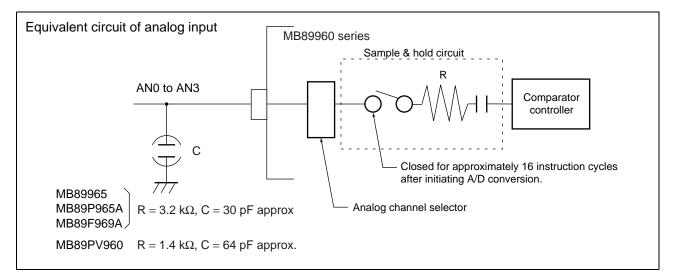

The deviation between the actual conversion characteristics and the line linking the zero transition point ("00 0000 0000B" $\leftrightarrow \rightarrow$ "00 0000 0001B") and the full scale transition point ("11 1111 1110B" $\leftrightarrow \rightarrow$ "11 1111 1111B").


• Differential linearity error (unit : LSB)

The variation from the ideal input voltage required to change the output code by 1 LSB.

• Total error (unit : LSB)

The total error is the difference between the actual value and the theoretical value.



7. Notes for A/D Conversion

• Analog input pins and input impedance

The A/D converter incorporates a sample & hold circuit as shown below. When an A/D conversion starts, the voltage at the analog input pin is captured by the sample & hold capacitor for a period of 16 instruction cycles. Accordingly, if the output impedance of the external circuit connected to the analog input is high, the analog input voltage may not stabilize within the period of the analog input sampling time. Therefore, ensure that the output impedance of the external circuit is sufficiently low (10 k Ω or less). If it is not possible to reduce the output impedance of the external circuit, connecting an external capacitor of approximately 0.1 μ F is recommended.

• Error

The relative error increases as |AVR - AVss| becomes smaller.

8. Electrical Characteristics of Flash Memory

• Programming and erasing characteristics

Parameter		Sym bol	Pin Name	Condition	Value			Unit	Remarks	
Faianeter					Min.	Тур.	Max.	Unit	Reillaiks	
Power supply current*1			IFWE	Vcc	Vcc = 5.0 V		_	40	mA	
Sector erasing time	Fixed time per sector regardless of size	Successful completion time				_	1	15	S	
		Unsuccess- ful comple- tion time				_	_	*2		
Programming time	per byte	Successful completion time			_	_	8	3600	μs	
		Unsuccess- ful comple- tion time				_	650	3600	μs	

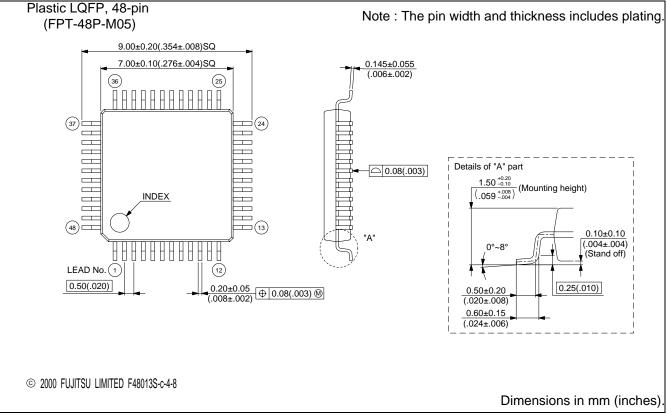
*1 : Automatic algorithm executing

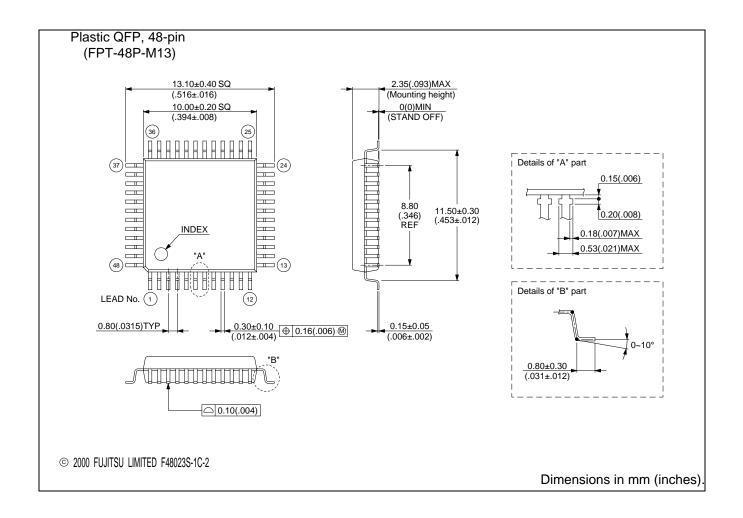
*2 : If a fault occurs during sector erasing, detection via DQ_5 may not be available ($DQ_5 = 1$ may not occur). Accordingly, a fault must be assumed after 15 s, even if DQ_5 does not go to "1".

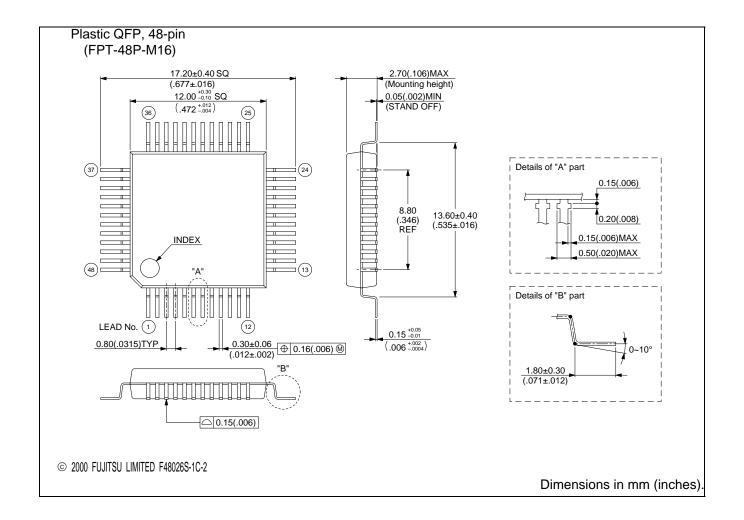
■ MASK OPTIONS

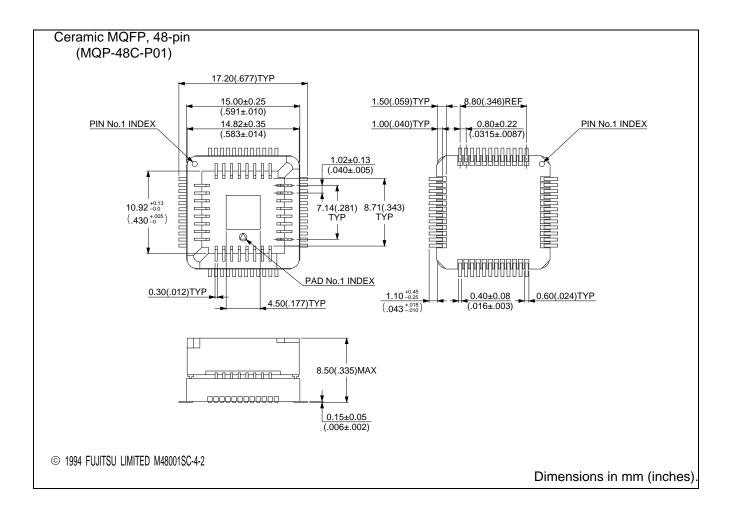
NO	Part No.	MB89965	MB89P965A/ MB89F969A	MB89PV960	
NO	Specifying procedure	Specify when ordering mask	Not available	Not available	
1	Initial value* selection for main clock oscillation stabilization delay time ($F_{CH} = 10 \text{ MHz}$) • 01 : $2^{12}/F_{CH}$ (0.4 ms approx.) • 10 : $2^{16}/F_{CH}$ (6.6 ms approx.) • 11 : $2^{18}/F_{CH}$ (26.2 ms approx.)	Selectable	2 ¹⁸ /Fсн (26.2 ms approx.)	2 ¹⁸ /Fсн (26.2 ms approx.)	

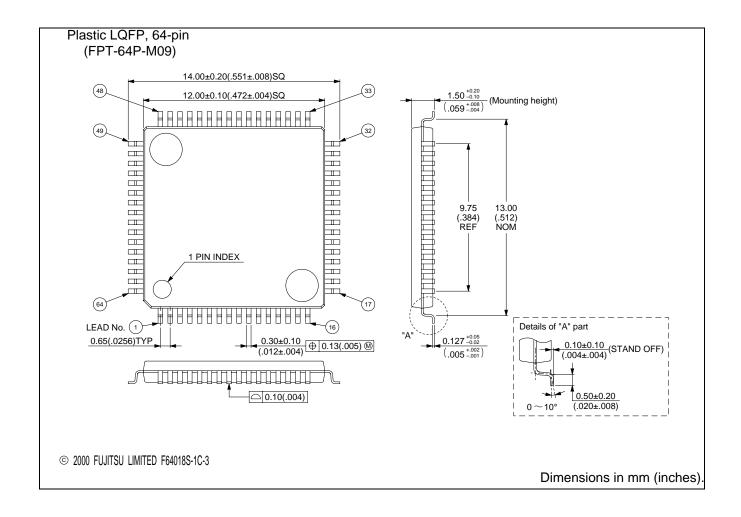
 $\mathsf{F}_{\mathsf{CH}}\,$: Frequency of main clock oscillation


* : This specifies the initial value after a reset of the oscillation stabilization delay time setting bits in the system clock control register (SYCC : WT1, WT0)


■ ORDERING INFOMATION


Part Number	Package	Remarks			
MB89965PFV1 MB89P965APFV1 MB89965CPFV1	Plastic LQFP, 48-pin (FPT-48P-M05)	The MB89965PFV1 does not have an I ² C function.			
MB89965PFM MB89P965APFM MB89965CPFM	Plastic QFP, 48-pin (FPT-48P-M13)	The MB89965PFM does not have an I ² C function.			
MB89965PF MB89P965APF MB89965CPF	Plastic QFP, 48-pin (FPT-48P-M16)	The MB89965PF does not have an I ² C function.			
MB89F969APFM	Plastic LQFP, 64-pin (FPT-64P-M09)				
MB89PV960CF	Ceramic MQFP, 48-pin (MQP-48C-P01)				


■ PACKAGE DIMENSIONS



FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0104 © FUJITSU LIMITED Printed in Japan